
























































































































Illustration of Numerical Solution Techniques

In this script we illustrate the numerical solution techniques of the Euler Method, the 2 stage Runge-Kutta
method, the 4 stage R-K method, and an adaptive integration method built into matlab, ode23. We choose as an
example an undamped forced oscillator: a problem for which there is a simple analytic solution. Our problem is:

y'' + y = sin(a*t)

y(0) = y'(0) = 0

The behavior of this oscillator depends on a, the dimensionless driving frequency. The amplitude blows up as a
approaches 1, the natural frequency of the oscillator.

We solve this problem as a pair of first order equations, such that y(1) is y and y(2) is y'. The corresponding
derivatives are:

ydot = @(t,y) [y(2) ; -y(1) + sin(a*t)];

With initial conditions: y0 = [0 ; 0];

We have the analytic solution to this equation:

yexact = @(t) (sin(a*t) - a* sin(t))/(1-a^2);
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The Euler Method

We plot things up over four periods (e.g., up to 8pi). We just define the derivative and the time step. We also
specify a, the frequency of the driving term.

a = 0.2; 

% The exact solution: 

yexact = @(t) (sin(a*t) - a* sin(t))/(1-a^2); 



dt = 0.2; 

tall = [0:dt:8*pi]'; 

y0 = zeros(2,1); % The initial condition 

ydot = @(t,y) [y(2) ; -y(1) + sin(a*t)]; 

yem = zeros(2,length(tall)); % we keep both y1 and y2. 

n = length(tall)-1; %the number of steps 

for i = 1:n 
    yem(:,i+1) = yem(:,i) + dt*ydot(tall(i),yem(:,i)); 
end 

figure(1) 
plot(tall,yexact(tall),'-o',tall,yem(1,:)) 
xlabel('t') 
ylabel('y') 
legend('exact solution','Euler Method') 



The Two-Stage Runge-Kutta Technique

Very little needs to be added to the Euler method for the 2s R-K technique. The error, for this step size, is very
small and is graphically indistinguishable from the exact solution.

y2s = zeros(2,length(tall)); % we keep both y1 and y2. 
for i = 1:n 
    k1 = dt*ydot(tall(i),y2s(:,i)); 
    k2 = dt*ydot(tall(i+1),y2s(:,i)+k1); 
    y2s(:,i+1) = y2s(:,i) + (k1+k2)/2; 
end 

figure(1) 
hold on 
plot(tall,y2s(1,:),'r') 
hold off 
legend('exact solution','Euler Method','2 stage R-K') 

The Four-Stage Runge-Kutta Technique

This is very similar to the two stage technique, except there are four intermediate steps. The method is even
more accurate.



y4s = zeros(2,length(tall)); % we keep both y1 and y2. 
for i = 1:n 
    k1 = dt*ydot(tall(i),y4s(:,i)); 
    k2 = dt*ydot(tall(i)+dt/2,y4s(:,i)+k1/2); 
    k3 = dt*ydot(tall(i)+dt/2,y4s(:,i)+k2/2); 
    k4 = dt*ydot(tall(i)+dt,y4s(:,i)+k3); 
    y4s(:,i+1) = y4s(:,i) + (k1+2*k2+2*k3+k4)/6; 
end 

figure(1) 
hold on 
plot(tall,y4s(1,:),'g') 
hold off 
legend('exact solution','Euler Method','2 stage R-K','4 stage R-K') 

Adaptive Integrator

We use the adaptive integration method ode23.m supplied with matlab. It is also very accurate, and would
require fewer steps.

[tout yout] = ode23(ydot,[0 8*pi],y0); 



figure(1) 
hold on 
plot(tout,yout(:,1),'k') 
hold off 
legend('exact solution','Euler Method','2 stage R-K','4 stage R-K','ode23')

Error Comparison

A better way of looking at the different methods is to determine the maximum error of each. Here, since we have
the exact solution, we can simply subtract it off and determine the maximum deviation.

errorem = max(abs(yem(1,:)-yexact(tall'))) 

error2s = max(abs(y2s(1,:)-yexact(tall'))) 

error4s = max(abs(y4s(1,:)-yexact(tall'))) 

errorode23 = max(abs(yout(:,1)-yexact(tout))) 

errorem = 



   1.9829e+00 

error2s = 

   3.3977e-02 

error4s = 

   6.5674e-05 

errorode23 = 

   6.3964e-03 

Other Approaches

Often it is desired to integrate to some condition (e.g., where a function value reaches zero) rather than over a
discrete range in time. This can be easily done for RK techniques using a while loop rather than a for loop
(updating the index at each step). At the conclusion of the integration the array of function values and
independent variables is trimmed (it needs to be predimensioned for efficiency) and the last element is adjusted
via interpolation for improved accuracy. Note that you can also adjust the array size inside the while loop as well.
This can also be done using the adaptive integrator ode23 via the "options" command. An implementation of a
"while" loop approach is given below.

t0 = 0; %The initial time 
y0 = [0; 0]; %The inital value (column vector) 

nchunk = 20; %We will predimension the arrays and expand as necessary 
tallw = zeros(1, nchunk); %We will keep time as a row vector 
y4sw = zeros(length(y0),nchunk); %The y values are an array 

tallw(1) = t0; 
y4sw(:,1) = y0; 

i = 1; 

while (y4sw(1,i)>0)||(i == 1); %The truncation condition, doing it at least once 

    if i+1 > length(tallw); %Redimensioning the array 
        y4sw = [y4sw, zeros(length(y0),nchunk)]; 
        tallw = [tallw,zeros(1, nchunk)]; 
    end 

    k1 = dt*ydot(tallw(i),y4sw(:,i)); 
    k2 = dt*ydot(tallw(i)+dt/2,y4sw(:,i)+k1/2); 



    k3 = dt*ydot(tallw(i)+dt/2,y4sw(:,i)+k2/2); 
    k4 = dt*ydot(tallw(i)+dt,y4sw(:,i)+k3); 

    y4sw(:,i+1) = y4sw(:,i) + (k1+2*k2+2*k3+k4)/6; 
    tallw(i+1) = tallw(i) + dt; 

    i = i+1; %We update i 
end 

tallw = tallw(1:i); %We trim the values 
y4sw = y4sw(:,1:i); 

% Now for the interpolation for the root crossing: 
f = y4sw(1,end-1)/(y4sw(1,end-1)-y4sw(1,end)); %Test on y = 0 
tallw(end) = tallw(end-1)+f*dt; 
y4sw(:,end) = y4sw(:,end-1) + f*(y4sw(:,end)-y4sw(:,end-1)); 

figure(2) 
plot(tall,yexact(tall),tallw,y4sw(1,:),'*') 
xlabel('t') 
ylabel('y') 
legend('exact solution','4 stage R-K') 
text(5,.5,['Root crossing at t = ',num2str(tallw(end))]) 



Conclusion

As can be seen, the Euler Method isn't very accurate for this differential equation. The two RK methods are much
more accurate, with the 4 stage method being three orders of magnitude better than the 2 stage method for this
choice of dt. The accuracy of the adaptive quadrature routine is determined by its tolerances, and can be
adjusted. For the choice of parameters used here it has the same total number of steps as the other methods and
lies between the 2 stage and 4 stage methods in accuracy.
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Simulation of a Quenched Cube

,n thiV Vimulation Ze uVe 0onte CaUlo inteJUation to deteUmine the aYeUaJe temSeUatuUe of a cube aV a function of
time� ,tV initial temSeUatuUe iV � and the VuUface temSeUatuUe iV ]eUo� : e VtaUt Zith 1 tUaceUV diVtUibuted oYeU the
SoVitiYe chunN of the cube� Ueflect at the V\mmetU\ SlaneV� and UemoYe tUaceUV Zhich e[ceed � in an\ diUection�
7he aYeUaJe temSeUatuUe iV MuVt the numbeU of tUaceUV UemaininJ in the domain� 1ote that the VteS Vi]e in time
muVt be Vmall enouJh that the ��
dt�A��� MumS iV Vmall Zith UeVSect to the domain�

N = 10000; % We start with lots of tracers

dt = 0.00005; % This yields a random walk step of 1%

x = rand(N,1); % The initial values of x
y = rand(N,1);
z = rand(N,1);

tfinal = .5; % How long we run it for.

tall = [0:dt:tfinal];

t = 0;
i = 1; % A counter.

isout = max(max(x,y),z); %This returns the maximum of x, y, and z for each
ikeep = find(isout<1);
nleft = N;

Tavgkeep = zeros(size(tall));

Tavg = 1; % Our initial temperature

Tavgkeep(1) = Tavg;

while nleft>0 & t<tfinal
    i = i+1;
    t = tall(i);
    x(ikeep) = x(ikeep) + (2*dt)^.5*randn(nleft,1);
    y(ikeep) = y(ikeep) + (2*dt)^.5*randn(nleft,1);
    z(ikeep) = z(ikeep) + (2*dt)^.5*randn(nleft,1);
    x = abs(x); % We reflect at zero
    y = abs(y);
    z = abs(z);
    isout = max(max(x,y),z); %This returns the maximum of x, y, and z for each
    ikeep = find(isout<1);
    nleft = length(ikeep);
    Tavgkeep(i) = nleft/N;
end



figure(1)
plot(tall, Tavgkeep)
xlabel('t')
ylabel('Average Temperature')
grid on
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